Cyclotomic Function Fields with Divisor Class Number One
نویسندگان
چکیده
منابع مشابه
Class Numbers of Cyclotomic Function Fields
Let q be a prime power and let Fq be the nite eld with q elements. For each polynomial Q(T) in FqT ], one could use the Carlitz module to construct an abelian extension of Fq(T), called a Carlitz cyclotomic extension. Carlitz cyclotomic extensions play a fundamental role in the study of abelian extensions of Fq(T), similar to the role played by cyclotomic number elds for abelian extensions of Q...
متن کاملCM-fields with relative class number one
We will show that the normal CM-fields with relative class number one are of degrees ≤ 216. Moreover, if we assume the Generalized Riemann Hypothesis, then the normal CM-fields with relative class number one are of degrees ≤ 96, and the CM-fields with class number one are of degrees ≤ 104. By many authors all normal CM-fields of degrees ≤ 96 with class number one are known except for the possib...
متن کاملIdeal Class Groups of Cyclotomic Number Fields I
Following Hasse’s example, various authors have been deriving divisibility properties of minus class numbers of cyclotomic fields by carefully examining the analytic class number formula. In this paper we will show how to generalize these results to CM-fields by using class field theory. Although we will only need some special cases, we have also decided to include a few results on Hasse’s unit...
متن کاملIdeal Class Groups of Cyclotomic Number Fields Ii
We first study some families of maximal real subfields of cyclotomic fields with even class number, and then explore the implications of large plus class numbers of cyclotomic fields. We also discuss capitulation of the minus part and the behaviour of p-class groups in cyclic ramified p-extensions. This is a continuation of [13]; parts I and II are independent, but will be used in part III. 6. ...
متن کاملComputation of Real Quadratic Fields with Class Number One
A rapid method for determining whether the real quadratic field Sí = S(\/D) has class number one is described. The method makes use of the infrastructure idea of Shanks to determine the regulator of .W and then uses the Generalized Riemann Hypothesis to rapidly estimate L(l, x) to the accuracy needed for determining whether or not the class number of 3£ is one. The results of running this algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 1991
ISSN: 0387-3870
DOI: 10.3836/tjm/1270130486